
Computer Problem #2

Paul Dorman

March 13, 2008

Introduction
This problem involves solving a Couette Flow, laminar viscous flow between two plates moving relative to each other.
The plates are taken to extend infinitely in the plane of motion, limiting all variations to exist normal to the plates.
Consequently, the flow needs only to be solved at one x location, but for several points in the y direction to fully
characterize it. This flow is governed by the PDE below:

∂u

∂t
= ν

∂2u

∂y2

with initial and boundary conditions given by:

u (0, t) = 0, u (L, t) = 1, y (y, 0) =
y

L
+ sin

(
π

y

L

)

1 Exact Solution
The exact solution to this equation consists of a steady-state solution plus (in the general case of the PDE) an infinite
series of transients, as shown below:

uexact (y, t) =
y

L
+

∞∑

n=1

ansin
(
nπ

y

L

)
e−ν(nπ

L)2
t

This amounts to a linear increase in velocity from 0 at the y = 0 boundary to 1 at the y = L boundary as the steady
state, with decaying transients from the initial velocity condition. Given the particular initial condition for this problem,
only the n = 1 transient remains, giving the following as the exact time-dependent solution:

uexact (y, t) =
y

L
+ sin

(
π

y

L

)
e−ν(π

L)2
t

This equation can be non-dimensionalized by dividing y and t by some functions to eliminate the L and ν terms from
the equation. This non-dimensionalization can be done as follows:

y′ =
y

L
, ∂

∂y = ∂
∂y′

∂y′

∂y = 1
L

∂
∂y′ ,

∂2

∂y2
=

1
L2

∂2

∂y′2

t′ =
t

τ
, ∂

∂t = ∂
∂t′

∂t′

∂t = 1
τ

∂
∂t′ , τ =

L2

ν

Here τ has been specifically chosen to eliminate L and ν from the equation, as demonstrated below:

∂u

∂t
=

1
τ

∂u

∂t′
=

ν

L2

∂u

∂t′

1

ν
∂2u

∂y2
=

ν

L2

∂2u

∂y′2

Therefore:

∂u

∂t′
=

∂2u

∂y′2

The boundary and initial conditions for the non-dimensionalized equation are given by:

u (y′ = 0, t) = 0, u (y′ = 1, t) = 1, u (y′, t′ = 0) = y′ + sin (πy′)

The initial condition is shown in the figure below:

The exact solution to the non-dimensional formulation is given by:

uexact (y′, t′) = y′ + sin (πy′) e−π2t

The steady state solution to the non-dimensional formulation is given by:

uSS (y′) = y′

The steady state solution is shown in the figure below:

2

2 Finite Difference Approximation
The finite difference scheme prescribed for this problem is an implicit-explicit scheme, given as Combined Method A in
Tannehill, Anderson, and Pletcher. This scheme can vary from fully implicit to fully explicit, depending on a weighting
factor θ. Although the general equation contains a ν term, that has been eliminated via non-dimensionalization, as shown
in the previous section. The resultant finite difference approximation is given by the following expression:

un+1
j − un

j

∆t′
=

1
∆y′2

[
θ
(
un+1

j+1 − 2un+1
j + un+1

j−1

)
+ (1− θ)

(
un

j+1 − 2un
j + un

j−1

)]

which can be rearranged into tri-diagonal form, as shown below:

(∆t′θ) un+1
j−1 −

(
∆y′2 + 2∆t′θ

)
un+1

j + (∆t′θ) un+1
j+1 = −∆t′ (1− θ)

(
un

j+1 − 2un
j + un

j−1

)
−∆y′2un

j

where the coefficients of the u terms on the left and the entire RHS form the matrix entries for simultaneous solution to
the following equation set:

bju
n+1
j−1 + dju

n+1
j + aju

n+1
j+1 = cj

bj = ∆t′θ

dj = −
(
∆y′2 + 2∆t′θ

)

aj = ∆t′θ

cj = −∆t′ (1− θ)
(
un

j+1 − 2un
j + un

j−1

)
−∆y′2un

j

Putting these values into a tri-diagonal matrix allows for the simultaneous solution of all uj at timestep n+1 using
the Thomas algorithm. Since u is fixed at locations j = 1 and j = jmax, the solution does not need to be computed there,
and the matrix can be made smaller (and therefore faster to solve). However, at j = 2 and j = jmax− 1 special care must

3

be taken as an entry is removed from the matrix diagonal band due to the matrix boundaries, and must be accounted for
in the c value at that index, as shown below, where the values denoted with ’ represent the new values:

c′2 = c2 − b2u1 = c2

c′jmax−1 = cjmax−1 − ajmax−1ujmax = cjmax−1 − ajmax−1

This takes care of the boundary conditions from the PDE. The initial condition is taken care of by setting u for the
first time step (t’ = 0) at each j index to the discrete value of the initial condition (in its non-dimensional form) at that
point:

u1
j =

j − 1
jmax − 1

+ sin

(
π

j − 1
jmax − 1

)

3 Error Calculations
Three error calculations are performed for this problem: calculation of a root mean square (RMS) residual, RMS error
relative to the exact time-dependent solution, and RMS error relative to the exact steady-state solution. The RMS
residual gives an indication of how much the finite difference solution is changing from one iteration to the next. The loop
termination condition is that this residual is less than 10−6; i.e., the solution is changing by less than one part in a million
at each iteration. Although this does not guarantee that the finite difference solution has matched the exact solution, it
is changing so slowly at that point that it is impractical (and may be impossible) to run it until it converges on the exact
solution. This residual is calculated as:

R =
jmax−1∑

j=2

√(
un+1

j − un
j

)2

jmax − 2

where the summation takes place between j = 2 and j = jmax − 1 because the value of u at 1 and jmax is held fixed.
The two RMS error terms give the root mean square error between the finite difference solution and the time-dependent

and steady-state exact solutions. These expression are given below:

Errortime−dependent =
jmax−1∑

j=2

√(
un+1

j − uexact (y′, t′)
)2

jmax − 2

Errorsteady−state =
jmax−1∑

j=2

√(
un+1

j − uSS (y′)
)2

jmax − 2

where y′ is given by j−1
jmax−1 , and t′ is calculated by starting from 0 and adding ∆t′ at each iteration.

4 Stability Analysis
The finite difference approximation used here has varying regimes of stability. By von Neumann analysis, it can be found
that the scheme is unconditionally stable when 1

2 ≤ θ ≤ 1, and conditionally stable when 0 ≤ θ < 1
2 . The condition for

stability is that 0 ≤ ∆t′

$y′2 ≤ 1
2−4θ ; or, since ∆t′ is always positive: ∆t′ ≤ ∆y′2

2−4θ . In all cases, jmax = 11 was used, giving
∆y′ = 0.1.

4.1 θ = 0

For the θ = 0 case, which is fully explicit, the scheme should be stable when ∆t′ ≤ ∆y′2

2 . To verify this, tests were
performed with ∆t′ equal to ∆y′2

4 = 0.0025, ∆y′2

2 = 0.005, and ∆y′2 = 0.01. These analytic limits are borne out in
practice, as is demonstrated below.

4

4.1.1 ∆t′ = ∆y′2

4

For this value of ∆t′, the numerical solution was stable and convered to an RMS residual of less than 10−6 in 398 iterations,
with a steady-state RMS error of 3.89× 10−5. As can be seen in the figure below, the time-dependent RMS error initially
rose, but then began to converge quickly.

4.1.2 ∆t′ = ∆y′2

2

In this case, the solution was also stable and actually converged more quickly than with the smaller value of ∆t′, in terms
of numbers of iterations. This should be expected, as the step size was twice as big. However, it took 211 iterations to
reach the RMS residual tolerance, which is slightly more than half the number if iterations it took with half the step size,
most likely because the scheme was only marginally stable. The RMS error followed the same trend as before, although
the error climbed higher before returning to 0, as seen in the figure below.

5

4.1.3 ∆t′ = ∆y′2

With ∆t′ above the conditional stability limit, the scheme displays the expected unstable behavior. Interestingly, it starts
out well, approaching the solution, as seen in the figure below from iteration number 30, but then it develops oscillations,
seen in the figure from iteration number 35, which due to the instability increase until the numerical limits of the machine
are reached.

4.2 θ = 1
2

Because this combined implicit-explicit scheme is nominally unconditionally stable, two relatively large values of ∆t′ were
chosen to test: ∆t′ = ∆y′ = 0.1 and ∆t′ = 10∆y′ = 1. As is demonstrated in the following sections, this scheme was
indeed found to be uncondtionally stable.

6

4.2.1 ∆t′ = ∆y′

This value of ∆t′ allowed the scheme to converge in 14 iterations, with a final steady-state RMS error of 2.31 × 10−7.
Unlike with the fully explicit scheme, the RMS residual and errors decreased monotonically toward 0, as seen in the figure
below.

4.2.2 ∆t′ = 10∆y′

For this case with the larger value of ∆t′, the solution took more iterations to converge, but had done so by the 35th
iteration with a steady-state RMS error of 3.74× 10−7. Additionally, the steady-state and time-dependent errors lay right
on top of each other for this case because the time step was larger so the time-dependent solution had essentially become
the steady-state solution.

7

4.3 θ = 1

The last scheme to be tested for stability is the fully implicit scheme. Again, this scheme is nominally unconditionally
stable, so the same values of ∆t′ of ∆y′ = 0.1 and ∆y′ = 1 were chosen. And again, the stability was in practice as it was
determined it should be in theory.

4.3.1 ∆t′ = ∆y′

This case converged in 20 iterations with a final steady-state RMS error of 8.79× 10−7. This is a few more iterations than
for the same ∆t′ with θ = 0.5, suggesting that the fully implicit case is not as computationally efficient. The errors are
shown in the figure below. In this case, the residual and the steady-state error lay atop each other.

4.3.2 ∆t′ = 10∆y′

For this case, the solution converged in only seven iterations to a steady-state RMS error of 4.38 × 10−8. This was
unexpected as previously a larger ∆t′ led to a greater number of iterations required for convergence. Additionally, the
final steady state error was an order of magnitude less than at convergence for the other setups. Once again, the time-
dependent and steady-state errors lie atop each other, as at these time scales the two solutions are essentially identical.

8

5 Accuracy
For the cases θ = 0 and θ = 1, the accuracy of the finite difference expression should be O

(
∆t′,∆y′2

)
. For the θ = 1

2

case, the accuracy of the finite difference expression should be O
(
∆t′2,∆y′2

)
. These can be determined by finding the

truncation error of the finite difference expression and locating the lowest order terms. To find the actual accuracy of the
code, the RMS time-dependent error from the first iteration was looked at, since that represented a single timestep from
the initial condition at which it was numerically identical to the exact solution. Grids of varying fineness were used to
examine the ∆y′ accuracy, and various timesteps were used to examine the ∆t′ accuracy. To determine if an accuracy
was linear, it was plotted with Excel and the R2 value for a linear fit taken, with the requirement that it be near 1. To
determine if it was quadratic, it was again plotted with Excel, this time with a 2nd order polynomial, and the magnitude
of the quadratic term was compared with the magnitude of the linear term, with the requirement that it be significantly
larger. In general, the order of accuracy of the code was found to correspond very well with the predictions, although the
∆y′ accuracy for the θ = 1 case fit less well.

5.1 θ = 0

For the explicit grid, values for ∆t′ of ∆y′2

2 , ∆y′2

3 , and ∆y′2

4 were used, for both the fine (∆y′ = 0.02) grid. In this case,
the RMS errors were as shown in the table below, which correspond to a linear dependence with an R2 value of 0.9893.

∆t′ RMS Error
0.0002000 9.27× 10−7

0.0001333 3.09× 10−7

0.0001000 1.16× 10−7

To find the ∆y′ accuracy, a constant value of ∆t′ = 0.0002 was used, with ∆y′ as 0.02, , 0.0333, 0.05, 0.0667, and
0.10. This resulted in the expected quadratic error fit (quadratic term 19 times the linear dependence), with an R2 value
of 0.9938, as shown in the table below. There is an outlier at ∆y′ = 0.0333, which may be the result of cancellations in
the truncation error resulting in a better overall accuracy.

∆y′ RMS Error
0.0200 9.27× 10−7

0.0333 1.03× 10−7

0.0500 1.53× 10−6

0.0667 3.85× 10−6

0.1000 1.06× 10−5

9

5.2 θ = 1
2

For the implicit-exlicit scheme, values for ∆t′ of ∆y′

8 , ∆y′

4 , ∆y′

2 , ∆y′, and 2∆y′ were used for a ∆y′ of 0.02 to determine
the ∆t′ accuracy. The results are that the RMS error term has a quadratic dependence 71 times the linear dependence
on ∆t′, with an R2 value of 0.9995, with the data given in the table below.

∆t′ RMS Error
0.0025 4.78× 10−6

0.0050 4.23× 10−6

0.0100 3.09× 10−5

0.0200 3.39× 10−4

0.0400 2.46× 10−3

For the determination of the ∆y′ accuracy, ∆t′ was held fixed at 0.0025, and the finite difference expression was
calculated for ∆y′ values of 0.01, 0.02, 0.0333, 0.04, and 0.05. The accuracy was found to be of order ∆y′2, with the error
term in the quadratic being 730 times the linear term and an R2 value of 1, from the data shown in the table below.

∆y′ RMS Error
0.0100 5.39× 10−7

0.0200 4.78× 10−6

0.0333 1.49× 10−5

0.0400 2.20× 10−5

0.0500 3.50× 10−5

5.3 θ = 1

For the fully implicit scheme, to determine the ∆t′ order of accuracy, ∆y′ was held fixed at 0.02, while ∆t′ was set to
0.01, 0.02, 0.03, 0.04, and 0.05. The result was a linear order accuracy, with an R2 value of 0.993, for the data given in
the table below.

∆t′ RMS Error
0.01 0.00298
0.02 0.01023
0.03 0.01992
0.04 0.03086
0.05 0.04225

For the determination of the order of ∆y′ accuracy, ∆t′ was held fixed at 0.05, while ∆y′ was set to 0.01, 0.02, 0.0333,
0.04, and 0.05. For this test, the quadratic term came out to be only 7.3 times the linear term, with an R2 value of 1,
which does not match as well with the theory as for the other cases. In fact, using a linear fit gave an R2 value of 0.9965,
which indicates it was nearly linear. The data are given in the table below.

∆y′ RMS Error
0.0100 0.0420
0.0200 0.0423
0.0333 0.0426
0.0400 0.0428
0.0500 0.0432

6 Steady-State Solutions
For the steady-state solutions using a coarse grid of jmax = 11 grid points and a fine grid of jmax = 51 grid points, θ = 1

2
and ∆t′ = ∆y′ were chosen as the input parameters.

6.1 Coarse Grid
Using the input parameters described above with ∆t′ = ∆y′ = 0.1, the coarse grid converged in 14 iterations with a final
steady-state RMS error of 2.31× 10−7.

10

y’ u
0.0 0.00000000
0.1 0.10000010
0.2 0.20000018
0.3 0.30000025
0.4 0.40000029
0.5 0.50000031
0.6 0.60000029
0.7 0.70000025
0.8 0.80000018
0.9 0.90000010
1.0 1.00000000

6.2 Fine Grid
The fine grid converged in 61 iterations to a steady-state RMS error of 4.07× 10−6, with ∆t′ = ∆y′ = 0.02.

11

y’ u y’ u y’ u y’ u y’ u
0.00 0.00000000 0.20 0.20000335 0.40 0.40000541 0.60 0.60000541 0.80 0.80000335
0.02 0.02000036 0.22 0.22000363 0.42 0.42000551 0.62 0.62000529 0.82 0.82000305
0.04 0.04000071 0.24 0.24000390 0.44 0.44000559 0.64 0.64000515 0.84 0.84000274
0.06 0.06000107 0.26 0.26000415 0.46 0.46000565 0.66 0.66000499 0.86 0.86000242
0.08 0.08000142 0.28 0.28000439 0.48 0.48000568 0.68 0.68000481 0.88 0.88000210
0.10 0.10000176 0.30 0.30000461 0.50 0.50000569 0.70 0.70000461 0.90 0.90000176
0.12 0.12000210 0.32 0.32000481 0.52 0.52000568 0.72 0.72000439 0.92 0.92000142
0.14 0.14000242 0.34 0.34000499 0.54 0.54000565 0.74 0.74000415 0.94 0.94000107
0.16 0.16000274 0.36 0.36000515 0.56 0.56000559 0.76 0.76000390 0.96 0.96000071
0.18 0.18000305 0.38 0.38000529 0.58 0.59000551 0.78 0.78000363 0.98 0.98000036

1.00 1.00000000

7 Time Velocity Profiles
To compare the time velocity profiles, three values of the control parameter θ were used: 0, 1

2 , and 1. To ensure the
stability of the solution, ∆t′ = ∆y′2

4 was used for the first case, and ∆t′ = ∆y′ was used for the latter two cases. For all
cases, jmax = 51 was used, giving a corresponding value of ∆y′ = 0.02. As can be seen in the figures below, the finite
difference approximation was very close to the exact solution for the θ = 0 and θ = 1

2 cases, while it was slightly off
between the initial condition and steady state for the θ = 1 case.

12

13

8 Code
The code is written in ANSI C, compiled with GCC 4.0.1 on Mac OS X 10.5. The grid spacing parameter jmax is given as
JMAX on line 11. The variables theta, maxItr, and tol give the finite difference expression control parameter, maximum
number of iterations, and RMS residual tolerance for convergence, respectively. The ∆t′ parameter is given as dt on line
40. Upon running, the code will generate the file Residual.csv, which contains the RMS residual, RMS time-dependent
error, and RMS steady-state error; and several grid-N.csv, which contain the solution at iteration number N.

#inc lude <s td i o . h>
#inc lude <math . h>

void i n i t i a l C o nd i t i o n s () ; // s e t s up the i n i t i a l s t a t e o f u
void i t e r a t i o n () ; // performs a s i n g l e time−s tep i t e r a t i o n
void dumpGrid (i n t i) ; // p r i n t s the cur rent s t a t e o f u to a CSV f i l e
double uExact (i n t j , double t) ;

// r e tu rn s the exact s o l u t i o n at gr id−po int j and non−d time t
double uSS(i n t j) ; // r e tu rn s the steady s t a t e s o l u t i o n at gr id−po int j
void c l ean () ; // empties the d i r e c t o r y o f generated ∗ . csv f i l e s

#de f i n e JMAX 51

double u [JMAX] ;

double r e s i d u a l ;
double e r r o r ;
double er rorSS ;

double theta = 1 ;
i n t maxItr = 10000 ;
double t o l = 1E−6;

double dy = 1 .0/ (JMAX−1);
double t = 0 . 0 ;
double dt ;

14

i n t main (i n t argc , const char ∗ argv []) {
i n t i ;
FILE ∗ rP lo t ;

c l ean () ;

rP lo t = fopen (" Res idual . csv " , "w") ;
f p r i n t f (rPlot , " I t e r a t i on , Residual , Error , SS Error \n") ;

i n i t i a l C o nd i t i o n s () ;

dumpGrid (0) ;

dt = dy ;

f o r (i = 1 ; i <= maxItr ; i++){
t += dt ;
i t e r a t i o n () ;
dumpGrid (i) ;
f p r i n t f (rPlot , "%3d,%g,%g,%g\n" , i , r e s i dua l , e r ror , e r rorSS) ;
i f (r e s i d u a l <= t o l)

break ;
}

f c l o s e (rP lo t) ;

r e turn 0 ;
}

// s e t s up the g r id with non−dimens iona l i n i t i a l cond i t i on : u = y ’ + s i n (p i ∗y ’)
void i n i t i a l C o nd i t i o n s (){

i n t j ;

f o r (j = 0 ; j < JMAX; j++){
double yPrime = j /(JMAX−1 .0) ;
u [j] = yPrime + s in (M_PI∗yPrime) ;

}
}

// performs the Thomas a lgor i thm over the e n t i r e g r id
void i t e r a t i o n (){

i n t j ;
double b [JMAX−2] , d [JMAX−2] , a [JMAX−2] , c [JMAX−2] ;

r e s i d u a l = 0 . 0 ;
e r r o r = 0 . 0 ;
e r rorSS = 0 . 0 ;

// s e t up c o e f f i c i e n t s
// j i n d i c e s o f f s e t from u array by 1
f o r (j = 0 ; j < JMAX−2; j++){

b [j] = dt∗ theta ;
d [j] = −(2.0∗ dt∗ theta + dy∗dy) ;
a [j] = dt∗ theta ;

15

c [j] = −dt ∗(1.0− theta)∗ (u [j +2]−2.0∗u [j+1]+u [j]) − dy∗dy∗u [j +1] ;
}

// c o r r e c t f o r d iagona l band t runcat i on
c [JMAX−3] = c [JMAX−3] − a [JMAX−3] ;

// Thomas a lgor i thm
f o r (j = 1 ; j < JMAX−2; j++){

d [j] = d [j] − b [j] / d [j −1]∗a [j −1] ;
c [j] = c [j] − b [j] / d [j −1]∗ c [j −1] ;

}

// j i n d i c e s o f f s e t from u array by 1
c [JMAX−3] = c [JMAX−3]/d [JMAX−3] ;
r e s i d u a l += pow(c [JMAX−3] − u [JMAX−2] , 2) ;
e r r o r += pow(c [JMAX−3] − uExact (JMAX−2, t) , 2) ;
e r rorSS += pow(c [JMAX−3] − uSS(JMAX−2) , 2) ;
u [JMAX−2] = c [JMAX−3] ;
f o r (j = JMAX−4; j >= 0 ; j−−){

double newU = (c [j] − a [j]∗u [j +2])/d [j] ;

r e s i d u a l += pow(newU − u [j +1] , 2) ;
e r r o r += pow(newU − uExact (j +1, t) , 2) ;
e r rorSS += pow(newU − uSS(j+1) , 2) ;

u [j +1] = newU ;
}
r e s i d u a l = sq r t (r e s i d u a l /(JMAX−2)) ;
e r r o r = sq r t (e r r o r /(JMAX−2)) ;
e r rorSS = sq r t (er rorSS /(JMAX−2)) ;

}

// p r i n t the g r id out to gr id−n . csv
void dumpGrid (i n t n){

FILE ∗ f i l e ;
i n t j ;
char f i leName [3 2] ;

s p r i n t f (f i leName , " gr id−%d . csv " , n) ;

f i l e = fopen (fi leName , "w") ;

f p r i n t f (f i l e , "y ’ , u , uExact\n") ;

f o r (j = 0 ; j < JMAX; j++){
f p r i n t f (f i l e , "%f ,%16.8 f ,%16.8 f \n" , j /(JMAX−1.0) , u [j] , uExact (j , t)) ;

}

f c l o s e (f i l e) ;
}

// exact s o l u t i o n at j , t ’
double uExact (i n t j , double t){

double y = j /(JMAX−1 .0) ;

16

re turn y + s in (M_PI∗y)∗ exp(−M_PI∗M_PI∗ t) ;
}

// steady s t a t e s o l u t i o n at j
double uSS(i n t j){

re turn j /(JMAX−1 .0) ;
}

// remove a l l generated ∗ . csv f i l e s
void c l ean (){

char f i leName [3 2] ;
i n t n ;

f o r (n = 0 ; n < maxItr ; n++){
s p r i n t f (f i leName , " gr id−%d . csv " , n) ;
remove (f i leName) ;

}

remove (" Res idual . csv ") ;
}

17

